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LElTER TO THE EDITOR 

Singularity spectrum of a critical KAM torus 

A H Osbaldestin and M Y Sarkis 
Mathematics Department, Loughborough University of Technology, Loughborough, 
Leicestershire LE1 1 3TU, UK 

Received 30 March 1987, in final form 26 June 1987 

Abstract. We numerically determine the f( a) spectrum of scaling indices for critical K A M  

tori in the area-preserving standard map. Similarities and differences between the corre- 
sponding orbits of circle maps are discussed. 

Recently, Halsey et a1 [ 11 have introduced a method of describing the global behaviour 
of certain strange orbits arising in dynamical systems (see also [2]). One of the examples 
studied in [ 13 is the golden mean orbit for circle maps at the onset of chaos. It is found 
that the variations in density of the orbit points on the circle are describable by a 
universal smooth spectrum of scaling indices known as t h e f ( a )  spectrum. The density 
of points within a small distance 1 around a point x, is denoted pt( I )  and the correspond- 
ing index CY, is defined by p , (  I )  = I”,‘”. It is found that CY, lies in an interval [ a m i n ,  CY,,,] 
whose endpoints are determined by the scaling behaviour at the critical point of the 
map.  CY) is the Hausdorff dimension of the set of points on the circle having index 

The formalism has also been applied to the attractor at the accumulation of period 
doubling bifurcations [l], the mode-locking structure of circle maps at the onset of 
chaos [l] ,  the spectrum of a quasiperiodic Schrodinger operator [3] and the critical 
point orbit on the boundary of a Siege1 disc [4]. 

It is the purpose of this letter to report on the application of this analysis to the 
critical golden mean K A M  torus in the area-preserving standard map. 

The standard map: 

CY. 

r ,+ ,  = r, - ( k / 2 7 ~ )  s i n ( 2 ~ 8 , )  

& + I  = 0, + r n + ,  mod 1 

has been a valuable model for the behaviour of Hamiltonian systems (see for instance 
[5]). Of particular interest is the transition to ‘global stochasticity’, i.e. the breakup 
of the last rotational invariant circle. It appears that there is a circle up to k = k,= 
0.971 635 406 of rotation number y = f ( d 5  - l ) ,  the reciprocal of the golden mean [6]. 
For brevity we call this the golden circle. 

In many ways this situation is similar to the persistence of dense orbits of rotation 
number y up to the critical perturbation k = 1 in the ‘sine circle map’: 

B , + R - ( k / 2 ~ ) s i n ( 2 7 ~ 8 , )  (2) 
as studied in [l]. There are important diffFrences, however. 

( D l )  The presence of symmetry lines in the standard map [7]. Figure l ( a )  shows 
the distribution of points of the critical golden orbit. There is symmetry about 0 = 0 
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Figure 1. ( a )  The histogram obtained from several thousand iterates of the point of the 
critical golden circle on the line 8 = 0  in the standard map (1 ) .  (6) The histogram from 
several thousand iterates of the critical point of the circle map (2) .  

and 8 = 0.5. Figure l (b )  shows the distribution for the analogous orbit of the circle 

(D2) The induced circle map on the critical KAM torus is believed to be only once 
continuously differentiable for the standard map golden circle [8]. Moreover, it has 
no critical points. The critical circle map, k = 1 in ( 2 ) ,  has a cubic inflection at 8 = 0. 
Figure 2( a )  shows the induced return map on the critical golden circle and figure 2( 6) 
its derivative. 

The algorithm described in [ l ]  to calculate the f ( a )  spectrum consists of the 
following steps. We take a critical orbit ( r , ,  e,,), ( rl , el) ,  . . . , (r,, O i ) ,  . . . truncated at 
i = F,, ( F ,  is a Fibonacci number) and form the lengths I, = d((ri, O i l ,  (riCF,,_, , O i C F , , _ , ) )  
(with O i + F , , - ,  - Bi calculated mod 1). These lengths serve as natural scales for a partition 
with measures pi = 1/ F,, associated with each scale. 

map (2). 
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Figure2. ( a )  The critical golden circle of the standard map in the e,,, e,,, plane, i.e. the 
graph of the induced return map. ( b )  The derivative of the curve in ( a ) .  Note there are 
no zeros and that the curve appears continuous but not differentiable. 
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From these lengths we form the partition function 

and Halsey er a1 [ l ]  argue that, for large n, this is of order unity only when 

7 =  ( q - l ) D ( q )  (4) 

with D(q)  related to a set of dimensions introduced by Renyi [9] (see also Hentschel 
and Procaccia [lo]). For instance, with q = 0, T = -D(O) and r, = 1 is an implicit 
equation for D(0) the Hausdorfl dimension. D(1) is the information dimension and 
D(2) the correlation exponent [ 101. 

The dimensions D( q )  are decreasing with q, and f and a are given via the Legendre 
transformation 

a ( q )  = d.r/dq ( 5 )  

f (q )  = 7 - q d7/dq. ( 6 )  
Eliminating q gives the function f ( a )  defined on a range [amin, a,,,]. 

the equation 
In practice, the solutions to r, = 1 converge slowly with n and it is better to solve 

rn/rn-l = 1 (7) 

somewhat reminiscent of the finite-size scaling method in statistical mechanics (see 
for instance [ 111) .  

We see from the histogram of figure l ( a )  that the minimum density is at 6 = O  and 
the maximum density occurs at 6 = 0.5. Unlike the circle map, since 6 = 0 is not a 
critical point of the return map, its iterate ( 6  = rn=0.59492091) is not a density 
maximum but is also a minimum. The local scaling behaviour at the minimum and 
maximum density points determines the range of D(q )  as q varies from --CO to +CO 

and hence determines the range [amin, amax]. 
The local scaling behaviour around 6 = 0  and 6=0.5 has been determined by 

Shenker and Kadanoff [7], who find a universal value for the limiting ratio of successive 
Fibonacci iterate distances from the starting point. 

Starting on the axis 6 = 0, for the golden mean, y, it is found that 

where d, (6 , )  is the distance of the F,th iterate of the starting point on the line 6 = 6, 
from that starting point and XO -- 0.721. 

Around 6 = 0.5 this equation must be modified slightly; convergence is witnessed 
only if we step by three, due to the routing pattern of the orbit [7]. It is found that 

with x1 = 1.093. 

Indeed, following Halsey er a1 [l], we have 
The exponents xo and xI are precisely what we need to determine amin and amax. 

In y 1 D(--CO) = a,,, =---- - - 1.387 
In( yXo) xg 
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and 

In y 1 
D(CO)=amin=---- - -0.915. 

Wr"1) xi 

The stepping by three in equation (9) indicates that we ought to modify equation 
( 7 )  to obtain sensible numerical results for large positive q. We therefore numerically 
solve the equation 

rn/rn-3 = 1 (12) 
for D ( q )  as a function of q via equation (4). Figure 3 is a plot of the function D ( q )  
thus obtained. Its Legendre transform (equations (5) and ( 6 ) )  gives the f ( a )  graph 
and is shown in figure 4. Excellent agreement with the predicted values of amin and 
amax ( (  10) and (1 1)) is seen. Note that the maximum value of J which occurs when 
q = 0 (here a = l.Ol), is the fractal dimension of the torus which is one here. Despite 
the fact that the critical orbit is 'strange', the dynamics still takes place on a set with 
integer dimension. 
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Figure 3. The graph of D ( 9 )  for the critical golden 
circle. 
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We have also investigated two other rotation numbers with different routing patterns: 
(a) d 2  - 1 with continued fraction expansion [2,2,2, .  . .] and (b) d3 - 1 with expansion 
[ 1,2,1,2, . . .I. In both of these examples the maximum density is not at 8 = 0.5 (figure 
5) but appears to be on one of the other symmetry lines of the standard map (the lines 
8 = j r  or 8 = j ( r +  1)). The exponent x, of Shenker and Kadanoff [7] is not expected 
to give amin, but instead it is necessary to calculate the local scaling behaviour at the 
point where the torus crosses the appropriate symmetry line. Equations (8) and (9) 
must be modified when the continued fraction expansion has period greater than one 
with the rotation number replaced by ( q n / q n + s ) r  with (9,) the denominators 
of the convergents of the rotation number and s the period of the continued fraction 
expansion ( = 2  for d3 - 1) [ 8 ] .  

Figure 6 shows thef( a )  curve for these two rotation numbers. The scaling exponent 
x,, is common to all rotation numbers considered here and hence so is amax. However 
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Figure 5. The histogram of several thousand iterates on the critical torus of ( a )  rotation 
number d 2  - 1, ( b )  rotation number d 3  - 1. 

a a 

Figure6. T h e f ( n )  graph for ( a )  the critical J 2 -  1 torus and ( b )  the critical 4 3 -  1 torus. 

amin differs in all three cases. This is distinct from the critical circle map ( k  = 1 in (2)) 
where amin = $q,,ax always (three being the degree of the inflection). 
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